25 research outputs found

    Age differences in encoding-related alpha power reflect sentence comprehension difficulties

    No full text
    When sentence processing taxes verbal working memory, comprehension difficulties arise. This is specifically the case when processing resources decline with advancing adult age. Such decline likely affects the encoding of sentences into working memory, which constitutes the basis for successful comprehension. To assess age differences in encoding-related electrophysiological activity, we recorded the electroencephalogram from three age groups (24, 43, and 65 years). Using an auditory sentence comprehension task, age differences in encoding-related oscillatory power were examined with respect to the accuracy of the given response. That is, the difference in oscillatory power between correctly and incorrectly encoded sentences, yielding subsequent memory effects (SME), was compared across age groups. Across age groups, we observed an age-related SME inversion in the alpha band from a power decrease in younger adults to a power increase in older adults. We suggest that this SME inversion underlies age-related comprehension difficulties. With alpha being commonly linked to inhibitory processes, this shift may reflect a change in the cortical inhibition–disinhibition balance. A cortical disinhibition may imply enriched sentence encoding in younger adults. In contrast, resource limitations in older adults may necessitate an increase in cortical inhibition during sentence encoding to avoid an information overload. Overall, our findings tentatively suggest that age-related comprehension difficulties are associated with alterations to the electrophysiological dynamics subserving general higher cognitive functions

    Parathyroid autotransplantation in extensive head and neck resections: case series report

    Get PDF
    Permanent or temporary hypoparathyroidism may be a debilitating result of radical cervical surgery, as noted most commonly following thyroid or parathyroid surgery. However, it can also be the outcome of any surgical procedure involving bilateral extensive manipulation of the anterior neck triangle, especially in order to ensure oncologically adequate surgical margins

    Γλωσσοσκόπιο / Glossoskopio

    No full text
    Weekly column on language in the Greek-speaking national newspaper of Cyprus Η Σημερινή / I Simerini

    Searching for language in the brain

    No full text
    Introduction to Neurolinguistic

    Neurolinguistics: The search for language in the brain

    No full text
    Introduction to Neurolinguistic

    A contemporary neurolinguistic model of auditory sentence processing

    No full text
    Introduction to Neurolinguistics and Friederici (2011)'s model of auditory sentence comprehension

    Alignment of alpha-band desynchronization with syntactic structure predicts successful sentence comprehension

    No full text
    Sentence comprehension requires the encoding of phrases and their relationships into working memory. To date, despite the importance of neural oscillations in language comprehension, the neural-oscillatory dynamics of sentence encoding are only sparsely understood. Although oscillations in a wide range of frequency bands have been reported both for the encoding of unstructured word lists and for working-memory intensive sentences, it is unclear to what extent these frequency bands subserve processes specific to the working-memory component of sentence comprehension or to general verbal working memory. In our auditory electroencephalography study, we isolated the working-memory component of sentence comprehension by adapting a subsequent memory paradigm to sentence comprehension and assessing oscillatory power changes during successful sentence encoding. Time–frequency analyses and source reconstruction revealed alpha-power desynchronization in left-hemispheric language-relevant regions during successful sentence encoding. We further showed that sentence encoding was more successful when source-level alpha-band desynchronization aligned with computational measures of syntactic—compared to lexical-semantic—difficulty. Our results are a preliminary indication of a domain-general mechanism of cortical disinhibition via alpha-band desynchronization superimposed onto the language-relevant cortex, which is beneficial for encoding sentences into working memory
    corecore